Skip to main content

Delayed differentiation skids & product variation efficiency

8th June 2020

Submitted by:

Andrew Warmington

Ken Sipes, director of process systems at EPIC Systems, explains the benefits of designing modular process skids for delayed differentiation

Delayed differentiation, also known as late product differentiation (LPD), refers to the practice of postponing changes to a base product until the end of the manufacturing process. This strategy is widely practised by manufacturers of flavours and fragrances, home and personal care products, adhesives, speciality chemicals and others.

The Covid-19 pandemic has also made LPD popular with hand sanitiser manufacturers. Delayed differentiation allows businesses to fulfil growing customer demands for product variations, while also mitigating the overall cost of manufacturing new products. When applied to industrial mixing, LPD creates flexibility by mass-producing the base ingredient(s) and blending additional ingredients downstream.

In recent years, process skid manufacturers have seen an increase in RFQs for these systems. LPD skids, also called inline blending skids, have increasingly been used. By integrating these into their plants, manufacturers are able to create more product variations without having to waste a larger batch that is not needed for smaller orders.

This factor enables manufacturers to have shorter lead times for their products and fill orders faster. For example, they can blend a run of one stock-keeping unit (SKU) for 300 units, quickly wash out the system, then run 1,000 units of a different SKU.

Additionally, LPD keeps overhead expenses lower by providing the production flexibility to make as much, or as little, product as needed at a given time. There are also situations where LPD systems are dedicated to a single product SKU. These usually come about because traditional batch mixing methods would be inefficient, usually due to the infrequency of batch runs, or the ingredient composition.

Delayed differentiation systems come in all shapes and sizes. They can be designed to fit in the most compact areas of a plant or can have a dedicated area of their own. They are also commonly designed for portability, either via fork pockets or even on castors. Some systems have also been installed as permanent fixtures within plants.

Before getting into specific examples of this method in action, it is prudent to understand the definition of inline blending, one of the most common process systems used for LPD. Although inline blending is not rocket science, it requires a level of finesse that can only be had from years of experience. Things such as viscosity, number of ingredients, flow rate/production requirements, and recipes all need to be considered.

Case studies

Recently, EPIC Systems worked with a Fortune 500 industrial chemical company on a project that used enzymes in laundry detergent. These enzymes would break down stains and improve detergent performance but presented an industrial hygiene problem for traditional batch systems by exposing employees to an enzyme with sensitisation issues during the mixing process.

Many engineered controls are required to mitigate the hazard in the handling of these enzymes. Inline blending reduces exposure as the enzymes can be quarantined until right before being added to the filler. Likewise, other hazardous chemicals can be dosed at the last minute through LPD to reduce risk.

In 2019, a Fortune 500 food & beverage company contacted EPIC to assist in the design and build of a portable LPD system for ice cream flavours. The manufacturer was looking to improve its mixing process by reducing washout time and increasing output, while maintaining the product quality of a batch system. This custom-built system pumps a base-neutral ice cream into the system and then injects flavours into the mix.

This system was also designed in a compact and portable manner, including casters, so that it could be moved to different filling lines as needed, eliminating fixed blending equipment at each filler. It has allowed the manufacturer to pilot test and implement a process for inline blending ice cream flavours. As of May, the manufacturer was optimising the system and working towards further rolling out LPD on other lines.

Another project called for a major ingredients module to blend a pre-mix and several other ingredients into a base formula. This base mix was pumped to the second skid, which added dyes, ancillary chemicals and perfumes to manufacture a wide range of end products. The second chemical injection skid was immediately upstream of the filler and both skids featured automated recipe inline mixing controls and variable flow rates.

Further examples

Systems can accommodate numerous ingredients, whether they are to provide SKU variants or are simply part of the recipe. EPIC has engineered systems that could blend several ingredients, as well as ones that blend two or three, such as isopropyl alcohol and water. Inline blending systems also provide flexibility extending beyond LPD.

Following the outbreak of Covid-19, several hand sanitiser manufacturers and co-packers approached EPIC to develop a standard continuous mixing skid that could be quickly installed in strategic locations globally. The process engineering and design teams developed a standard mixing module that meets FDA regulations and allows manufacturers to start producing 10-50+ GPM of WHO-approved hand sanitiser in under eight weeks.

Because of the inherent flexibility of these modular skids, sanitiser manufacturers are able to use them for short-term spikes in demand without compromising long-term return on investment. Because of their modular design, they can be easily relocated, allowing manufacturers to move their dosing system across the plant or across the world, as business needs evolve.

In another example, a major consumer products company asked EPIC to engineer a system that would double its flavour production capacity. The customer needed a system that was able to fit into a small space on a limited budget. EPIC used an industry-standard front-end loading engineering approach to design a system that would meet their needs.

The in-line blending skid uses ingredient trees to mix various products on one small skid, eliminating multiple storage tank requirements. Each ingredient tree has an on/off flow control valve that feeds raw ingredients from the raw materials storage area into the product formula. Flavours are fed from a perfume in-line blending system, allowing for just-in-time mixing and reducing downtime.

The skid also utilises two small tanks. As the product is mixed, one tank fills with the solution. Simultaneously, the other tank is emptied and washed out, prepping for the next product in the queue. This method allows for minimised waste. The 3-5% of product that is recovered during washout is remixed in future runs, allowing for virtually zero waste. The start-up of this system has allowed the customer to inline blend two different product lines, reaching over 25 different SKUs.

Contact

Ken Sipes

Director of Process Systems

EPIC Systems

+1 314 207 4261

www.epicmodularprocess.com/specialty-chemicals

Feature article – Saltigo rides out the cycle

Market and sustainability trends are positive drivers for Saltigo, despite the agro downturn. Andrew Warmington met up with the new CEO at Chemspec Europe

Submitted by:

Andrew Warmington

UPL to split out specialities

Indian agrochemicals giant UPL has announced plans to transfer its speciality chemicals business, including agrochemical active ingredient (AI) manufacturing to its wholly owned subsidiary UPL Spec

Submitted by:

Andrew Warmington

Nippon Shokubai opens Indonesian plant

Japan’s Nippon Shokubai has officially opened a 100,000 tonnes/year acrylic acid (AA) plant that was built at a cost of about $200 million at Cilegon, Banten, Indonesia.

Submitted by:

Andrew Warmington

CABB to invest at Finnish agro site

The CABB Group has said that it will invest over €50 million by 2025 to expand facilities at its agrochemical manufacturing site in Kokkola, Finland.

Submitted by:

Andrew Warmington

AI for SAPs

Together with Algo Artis, Japan’s Nippon Shokubai has developed an algorithm-based means for the production planning of superabsorbent polymers (SAPs) based on acrylic acid, and has started operati

Submitted by:

Andrew Warmington

adcs

Three invest further into ADCs

Three CDMOs have separately announced expansions in their antibody-drug conjugate (ADC) manufacturing capabilities and capacity on opposite sides of the Atlantic.

Submitted by:

Andrew Warmington

Cambrex exits drug product

CDMO Cambrex has sold its Drug Product business unit to Noramco. Terms were not disclosed.

Submitted by:

Andrew Warmington

Siegfried breaks ground on R&D centre

Siegfried has broke ground for its new global R&D centre for drug substances at its site in Evionnaz, Switzerland.

Submitted by:

Andrew Warmington

Drug product centre opens

Following two years of construction work, CDMO Siegfried has officially opened its new development centre for drug products at its sites in Barberà del Vallès and El Masnou near Barcelona.

Submitted by:

Andrew Warmington

Evonik realigns Health Care

In order to “maximise customer centricity and market focus” and continue an ongoing transition into “a system solutions partner for the pharmaceutical and biotech industries”, Evonik has divided it

Submitted by:

Andrew Warmington

First waste-based biosurfactants

Belgian start-up AmphiStar has launched what it claims are the first fully upcycled biobased surfactants under the trade names AmphiCare and AmphiClean.

Submitted by:

Andrew Warmington

Aether to supply Seqens

Indian firm Aether Industries has entered into a manufacturing agreement with Chemoxy International, a UK-based subsidiary of Seqens.

Submitted by:

Andrew Warmington

New model for biocatalysts

BASF, the Austrian Research Centre of Industrial Biotechnology (ACIB) and the University of Graz in Austria have co-developed a computer-assisted regression model to improve enzyme performance and

Submitted by:

Andrew Warmington

CBE JU funds 31 more projects

The Circular Bio-based Europe Joint Undertaking (CBE JU), a €2 billion partnership between the EU and the Bio-based Industries Consortium (BIC) that funds projects advancing competitive circular bi

Submitted by:

Andrew Warmington

Investment in Tanasote plant

Octowood, a part of the Sweden’s Rundvirke Industrier Group, has invested in a new treatment plant using Arxada’s wood preservative, Tanasote.

Submitted by:

Andrew Warmington

Rhamnolipid milestone reached

Evonik has manufactured the first product from its industrial-scale biosurfactants facility at Slovenská Lupca in Slovakia.

Submitted by:

Andrew Warmington

Sudarshan to buy Heubach

India’s Sudarshan Chemical Industries (SCIL) has entered into a definitive agreement to acquire the Heubach Group in a move that it said would “create a global pigment company, combining SCIL’s ope

Submitted by:

Andrew Warmington

Lanxess to continue pigment production

Lanxess has reversed a decision to sell the chromium oxide pigments business at the Krefeld-Uerdingen site in Germany, preserving 50 jobs there.

Submitted by:

Andrew Warmington

Alliance in natural fragrances

Sensegen, a US-based specialist in biotech-enabled fragrances, notably a new class of natural musk raw materials, has announced a strategic collaboration with Japan’s Takasago, a large player in th

Submitted by:

Andrew Warmington

Croda breaks ground in China

Croda International has broken ground for a low-carbon, multi-purpose production facility on a greenfield site in Guangzhou. This triples its manufacturing capacity for fragrances and establis

Submitted by:

Andrew Warmington

CCT collaboration for Givaudan

Flavours and fragrances giant Givaudan has agreed a research collaboration for the development of sustainable fragrance ingredients from renewable carbon, with US-based LanzaTech, which describes i

Submitted by:

Andrew Warmington

Kao boosts jasmine fragrance

Japan's Kao Corporation is to double capacity for the synthetic fragrance methyl dihydrojasmonate (MDJ) at its site in Olesa, Spain, by adding a second production facility.

Submitted by:

Andrew Warmington

Merck KGaA “in a strong strategic position”

At its latest Capital Markets Day, Merck KGaA said that it is “in a strong strategic position” to profit from medium-term growth opportunities in all three of its business sectors after a transitio

Submitted by:

Andrew Warmington

Suez joins Global Impact Coalition

Suez, which describes itself as “a global leader in circular solutions for water and waste”, has joined the Global Impact Coalition (GIC).

Submitted by:

Andrew Warmington

Chemours opens battery lab

Chemours has opened Chemours Battery Innovation Centre (CBIC) at the Chemours Discovery Hub in Newark, Delaware.

Submitted by:

Andrew Warmington